Multiple Papers of Our Team Have Been Accepted by CVPR 2024

CVPR 2024 officially released the list of accepted papers. Multiple papers from our team are included.

GP-NeRF: Generalized Perception NeRF for Context-Aware 3D Scene Understanding

Authors:Hao Li,Dingwen Zhang,Yalun Dai…

Applying NeRF to downstream perception tasks for scene understanding and representation is becoming increasingly popular. Most existing methods treat semantic prediction as an additional rendering task, \textit{i.e.}, the “label rendering” task, to build semantic NeRFs. However, by rendering semantic/instance labels per pixel without considering the contextual information of the rendered image, these methods usually suffer from unclear boundary segmentation and abnormal segmentation of pixels within an object. To solve this problem, we propose Generalized Perception NeRF (GP-NeRF), a novel pipeline that makes the widely used segmentation model and NeRF work compatibly under a unified framework, for facilitating context-aware 3D scene perception. To accomplish this goal, we introduce transformers to aggregate radiance as well as semantic embedding fields jointly for novel views and facilitate the joint volumetric rendering of both fields. In addition, we propose two self-distillation mechanisms, i.e., the Semantic Distill Loss and the Depth-Guided Semantic Distill Loss, to enhance the discrimination and quality of the semantic field and the maintenance of geometric consistency. In evaluation, we conduct experimental comparisons under two perception tasks (\textit{i.e.} semantic and instance segmentation) using both synthetic and real-world datasets. Notably, our method outperforms SOTA approaches by 6.94%, 11.76%, and 8.47% on generalized semantic segmentation, finetuning semantic segmentation, and instance segmentation, respectively.

LTGC: Long-Tail Recognition via leveraging Generated Content

Authors: Qihao Zhao, Yalun Dai, Hao Li, Wei Hu, Fan Zhang, Jun Liu

Long-tail recognition is challenging because it requires the model to learn good representations from tail categories and address imbalances across all categories. In this paper, we propose a novel generative and fine-tuning framework, LTGC, to handle long-tail recognition via leveraging generated content. Firstly, inspired by the rich implicit knowledge in large-scale models (e.g., large language models, LLMs), LTGC leverages the power of these models to parse and reason over the original tail data to produce diverse tail-class content. We then propose several novel designs for LTGC to ensure the quality of the generated data and to efficiently fine-tune the model using both the generated and original data. The visualization demonstrates the effectiveness of the generation module in LTGC, which produces accurate and diverse tail data. Additionally, the experimental results demonstrate that our LTGC outperforms existing state-of-the-art methods on popular long-tailed benchmarks.

Hao Li
Hao Li
PhD of Artificial Intelligence

Hao Li (李昊) is PhD candidate at NWPU for deep learning.