

Background

- Computer tomography scans are usually acquired with low intra-slice resolution and the ground-truth intermediate medical slices are always absent in clinical use.
- \succ Improving the intra-slice resolution is beneficial to the disease diagnosis for both human experts and computer-aided systems.

Target

This paper aims at building a medical slice synthesis model to increase the inter-slice resolution of an input 3D volume.

Motivation

- \succ Intermediate slices can be generated by interpolating slices in the axial view or interpolating pixels in the coronal/sagittal view.
- > Structural information appears to have different characteristics across views, and models learned from different views have their superiority.

Incremental Cross-view Mutual Distillation for Self-supervised Medical CT Synthesis

Jun Xu³ Liang Wang¹ Dingwen Zhang² Yixuan Yuan⁴ Chaowei Fang¹ Junwei Han² ¹Xidian University ²Northwestern Polytechnical University ³Nankai University ⁴City University of Hong Kong

Approach

Axial-View Slice Interpolation:

- Coronal/Sagittal-View Pixel Interpolation: HAN [*Niu et al.,2020*].
- Training Process:

- Single-view Internal Learning :
- Regarding down-sampled CT and original CT as training samples
- Using mean square error to calculate losses for predicted images and their wavelet coefficients

$$\begin{split} L_a^{int} &= \mathrm{MSE}(\hat{\mathbf{O}}_a, \mathbf{V}) + \sum_{t=1}^{3} \mathrm{MSE}(\mathrm{WT}_a^{(t)}(\hat{\mathbf{O}}_a), \mathrm{WT}_a^{(t)}(\mathbf{V})) \\ L_c^{int} &= \mathrm{MSE}(\hat{\mathbf{O}}_c, \mathbf{V}) + \sum_{t=1}^{3} \mathrm{MSE}(\mathrm{WT}_c^{(t)}(\hat{\mathbf{O}}_c), \mathrm{WT}_c^{(t)}(\mathbf{V})) \\ L_s^{int} &= \mathrm{MSE}(\hat{\mathbf{O}}_s, \mathbf{V}) + \sum_{t=1}^{3} \mathrm{MSE}(\mathrm{WT}_s^{(t)}(\hat{\mathbf{O}}_s), \mathrm{WT}_s^{(t)}(\mathbf{V})) \end{split}$$

 Incremental Cross-view Mutual Distillation: $L_c^n = \sum_{(x,y,z)\in\mathbb{T}_c^n(\gamma)} \frac{(\mathbf{O}_a^n[x,y,z] - \mathbf{O}_c^n[x,y,z])^2}{|\mathbb{T}_c^n(\gamma)|}$

$$L_s^n = \sum_{(x,y,z)\in\mathbb{T}_s^n(\gamma)} \frac{(\mathbf{O}_a^n[x,y,z] - \mathbf{O}_s^n[x,y,z])^2}{|\mathbb{T}_s^n(\gamma)|}$$

– Overall Training Loss:

 $L = L_a^{int} + L_c^{int} + L_s^{int} + 0.15 * (L_c^{cmd} + L_s^{cmd}) + 0.1 * (L^{com} + L^{sep})$

 Memory Bank Regularization: $L^{com} = \sum \sum \sum \|\mathbf{E}_{3}^{i}[x, y] - \mathbf{M}[z_{\text{pos}}^{i}(x, y)]\|_{2},$ $i=1 \ x=1 \ y=1$ s.t. $z_{\text{pos}}^{i}(x,y) = \operatorname*{argmax}_{x,y,z'} p_{x,y,z'}^{i};$ l = 1 h/8 w/8 $L^{sep} = \sum \sum \sum \max(\|\mathbf{E}_3^i[x, y] - \mathbf{M}[z_{\text{pos}}^i(x, y)]\|_2$ $i=1 \ x=1 \ y=1$ $- \|\mathbf{E}_{3}^{i}[x,y] - \mathbf{M}[z_{\text{neg}}^{i}(x,y)]\|_{2} + \alpha, 0),$ s.t. $z_{\text{neg}}^i(x,y) = \underset{z' \neq z_{\text{pos}}^i(x,y)}{\operatorname{argmax}} p_{x,y,z'}^i$.

Experimental Results

Quantitative Comparison

Method	2×				3×				4×			
	PSNR	SSIM _a	SSIM _c	SSIM _s	PSNR	SSIM _a	SSIM _c	SSIM _s	PSNR	SSIM $_a$	SSIM _c	SSIM _s
RDN [35]	43.51	0.9539	0.9519	0.9512	39.52	0.9402	0.9398	0.9376	37.89	0.9199	0.9210	0.9212
DPSR [34]	43.83	0.9690	0.9691	0.9682	38.82	0.9434	0.9423	0.9424	38.13	0.9166	0.9135	0.9154
MetaSR [8]	43.68	0.9547	0.9549	0.9548	39.90	0.9419	0.9425	0.9414	38.00	0.9211	0.9198	0.9214
RRIN [14]	43.45	0.9688	0.9691	0.9682	38.68	0.9428	0.9424	0.9422	38.10	0.9255	0.9232	0.9252
SRGAN [12]	43.22	0.9524	0.9521	0.9522	38.54	0.9433	0.9429	0.9425	37.91	0.9213	0.9209	0.9207
3D-MDSR [15]	44.31	0.9692	0.9698	0.9689	40.22	0.9489	0.9489	0.9490	38.20	0.9307	0.9302	0.9310
AdaCoF [13]	44.88	0.9749	0.9746	0.9747	40.92	0.9513	0.9498	0.9451	38.23	0.9311	0.9148	0.9150
SAINT [24]	44.43	0.9694	0.9641	0.9632	40.81	0.9448	0.9388	0.9416	38.42	0.9259	0.9175	0.9203
Ours	46.81	0.9792	0.9784	0.9786	42.94	0.9631	0.9589	0.9604	41.11	0.9404	0.9385	0.9382

Qualitative Comparison

Ablation Study

Variant	PSNR
w/o L_c^{cmd} or L_s^{cmd}	38.58
w/o L_c^{cmd}	40.26
w/o L_s^{cmd}	40.24
N=1	40.47
w/o WT	40.56
w/o memory	40.28
final variant	41.11
•	

Conclusion

- performance.

> This work proposes an incremental cross-view mutual distillation pipeline to tackle the CT slice synthesis task.

 \succ The mutual distillation between each view and incremental learning process contributes to a slice synthesizer with appealing

> Extensive experiments on the CT dataset demonstrate the superiority of our method against existing slice synthesis methods.